Materi Barisan dan Deret Aritmatika berikut Contoh Soal
Hallo... kali ini kita akan membahas tentang barisan dan deret aritmatika nih. Udah pada tau belum apa itu barisan dan deret aritmatika? Di sini akan di bahas tentang materi barisan dan deret aritmatika mulai dari pengertian, rumus, dan contoh soalnya tentu saja lengkap dengan pembahasan. Tanpa basa basi yuk langsung disimak materi dibawah ini...
Barisan Aritmatika
Pengertian Barisan Artitmatika
Aritmatika atau aritmetika yang kata yang berasal dari bahasa Yunani αριθμός = angka yang dulu biasa disebut Ilmu Hitung merupakan cabang tertua (atau pendahulu) dari matematika yang mempelajari operasi dasar bilangan.
Barisan Aritmetika adalah suatu barisan bilangan dengan pola tertentu berupa penjumlahan yang memiliki beda atau selisih yang sama/tetap.
Rumus Barisan Artitmatika
Selisih (beda) dinyatakan dengan b : b = U2 – U1 = U3 – U2 = Un – Un – 1
Suku ke n barisan aritmatika (Un) dinyatakan dengan rumus: Un = a + (n-1) b
dengan :
Un = suku ke n dengan n = 1,2,3, …
a = suku pertama → U1 = a
b = selisih/beda
Suku Tengah Barisan Aritmatika
Jika barisan aritmatika mempunyai banyak suku (n) ganjil, dengan suku pertama a, dan suku terakhir Un maka suku tengah Ut dari barisan tersebut adalah sebagai berikut:
Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun.
U1, U2, U3, …….Un-1, Un disebut barisan aritmatika, jika
U2 – U1 = U3 – U2 = …. = Un – Un-1 = konstanta
Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n
Contoh Soal dan Pembahasan Barisan Aritmatika
maka suku ke 15 dari barisan tersebut adalah 58.
Soal 2. Diketahui barisan aritmetika 3, 8, 13, …
- Tentukan suku ke-10 dan rumus suku ke-n barisan tersebut!
- Suku keberapakah yang nilainya 198 ?
Jawab :
Dari barisan aritmetika 3, 8, 13, … diperoleh suku pertama a = 3 dan beda b = 8 – 3 = 5.
Un = a + (n – 1)b
U10 = 3 + (10 – 1)5
= 3 + 9 x 5
= 3 + 45
= 48
Un = a + (n – 1)b
= 3 + (n – 1)5
= 3 + 5n – 5
= 5n – 2
Misalkan Un = 198, maka berlaku :
Un = 198
5n – 2 = 198
5n = 200
n = 40
Jadi 198 adalah suku ke- 40
Deret Aritmatika
Rumus Deret Aritmatika
Jika jumlah n suku pertama dinotasikan dengan.Sn maka S dari deret di atas adalah :
Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah
Sisipan pada Barisan Aritmatika
Apabila antara dua suku barisan aritmatika disisipkan k buah bilangan (suku baru) sehingga membentuk barisan aritmatika baru, maka:
Beda barisan aritmatika setelah disispkan k buah suku akan berubah dan dirumuskan:
Contoh Soal Deret Aritmatika
Soal 1. Suatu deret aritmatika 5, 15, 25, 35, …
Berapakah jumlah 10 suku pertama dari deret aritmatika tersebut?
Jawab:
n = 10
U1 = a = 5
b = 15 – 5 = 25 – 15 = 10
Sn = (2a + (n-1) b )
S10 = ( 2. 5 + (10 -1) 10)
= 5 ( 10 + 9.10)
= 5 . 100 = 500
Soal 2. Jumlah suku yang pertama dari barisan 20 + 15 + 10 +…… adalah …..
Penyelesaian :
a = 20
b = U2-U1
= 15-20
= -5
Sn = n (a + Un)
Un = a + (n – 1) b
U20 = 20 + (20-1)(-5)
= 20 + (19) (-5)
= 20 – 95
= – 75
S20 = . 20 (20 + (-75))
= 10 (-55)
S20 = – 550
0 Response to "Materi Barisan dan Deret Aritmatika berikut Contoh Soal"
Post a Comment